Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Lancet ; 401(10373): 281-293, 2023 01 28.
Article in English | MEDLINE | ID: covidwho-2165973

ABSTRACT

BACKGROUND: The safety, effectiveness, and cost-effectiveness of molnupiravir, an oral antiviral medication for SARS-CoV-2, has not been established in vaccinated patients in the community at increased risk of morbidity and mortality from COVID-19. We aimed to establish whether the addition of molnupiravir to usual care reduced hospital admissions and deaths associated with COVID-19 in this population. METHODS: PANORAMIC was a UK-based, national, multicentre, open-label, multigroup, prospective, platform adaptive randomised controlled trial. Eligible participants were aged 50 years or older-or aged 18 years or older with relevant comorbidities-and had been unwell with confirmed COVID-19 for 5 days or fewer in the community. Participants were randomly assigned (1:1) to receive 800 mg molnupiravir twice daily for 5 days plus usual care or usual care only. A secure, web-based system (Spinnaker) was used for randomisation, which was stratified by age (<50 years vs ≥50 years) and vaccination status (yes vs no). COVID-19 outcomes were tracked via a self-completed online daily diary for 28 days after randomisation. The primary outcome was all-cause hospitalisation or death within 28 days of randomisation, which was analysed using Bayesian models in all eligible participants who were randomly assigned. This trial is registered with ISRCTN, number 30448031. FINDINGS: Between Dec 8, 2021, and April 27, 2022, 26 411 participants were randomly assigned, 12 821 to molnupiravir plus usual care, 12 962 to usual care alone, and 628 to other treatment groups (which will be reported separately). 12 529 participants from the molnupiravir plus usual care group, and 12 525 from the usual care group were included in the primary analysis population. The mean age of the population was 56·6 years (SD 12·6), and 24 290 (94%) of 25 708 participants had had at least three doses of a SARS-CoV-2 vaccine. Hospitalisations or deaths were recorded in 105 (1%) of 12 529 participants in the molnupiravir plus usual care group versus 98 (1%) of 12 525 in the usual care group (adjusted odds ratio 1·06 [95% Bayesian credible interval 0·81-1·41]; probability of superiority 0·33). There was no evidence of treatment interaction between subgroups. Serious adverse events were recorded for 50 (0·4%) of 12 774 participants in the molnupiravir plus usual care group and for 45 (0·3%) of 12 934 in the usual care group. None of these events were judged to be related to molnupiravir. INTERPRETATION: Molnupiravir did not reduce the frequency of COVID-19-associated hospitalisations or death among high-risk vaccinated adults in the community. FUNDING: UK National Institute for Health and Care Research.


Subject(s)
COVID-19 , Adult , Humans , Middle Aged , SARS-CoV-2 , COVID-19 Vaccines , Bayes Theorem , Prospective Studies , Treatment Outcome
2.
Educ Prim Care ; 33(5): 280-287, 2022 09.
Article in English | MEDLINE | ID: covidwho-1908597

ABSTRACT

INTRODUCTION: Fifty years since Dr Tudor-Hart's publication of the 'Inverse Care Law', all-cause mortality rates and COVID-19 mortality rates are higher in more deprived areas. Part of the solution is to increase access and availability to healthcare in underserved and deprived areas. This paper examined how socio-economically representative the undergraduate general practice placements are in Northern Ireland (NI). METHODS: A quantitative study of general practices involved in undergraduate medical placements through Queen's University Belfast, comparing practice lists by deprivation indices, examining both blanket deprivation and deprivation quintile trends for teaching and non-teaching practices. RESULTS: Deprivation data for 135 teaching practices were compared against the 323 NI practices. Teaching practices had fewer patients living in the most deprived quintiles compared with non-teaching practices. Fewer practices with blanket deprivation were involved in undergraduate medical education, 32% compared with 42% without blanket deprivation. Practices in areas of blanket deprivation were under-represented as teaching practices, 10%, compared to 14% of NI general practices that met this criterion. CONCLUSION: Practices with blanket deprivation were under-represented as teaching practices. Exposure to general practice in deprived areas is an essential step to improving future workforce recruitment and ultimately to closing the health inequalities gap. Ensuring practices in high-need areas are proportionately represented in undergraduate placements is one way to direct action in addressing the 'Inverse Care Law'. This study is limited to NI and further work is required to compare institutions across the UK and Ireland.


Subject(s)
COVID-19 , Education, Medical, Undergraduate , General Practice , Delivery of Health Care , Family Practice/education , General Practice/education , Humans
3.
J Biomol Tech ; 32(3): 221-227, 2021 09.
Article in English | MEDLINE | ID: covidwho-1687374

ABSTRACT

The COVID-19 pandemic has had a profound, detrimental effect on economies and societies worldwide. Where the pandemic has been controlled, extremely high rates of diagnostic testing for the SARS-CoV-2 virus have proven critical, enabling isolation of cases and contact tracing. Recently, diagnostic testing has been supplemented with wastewater measures to evaluate the degree to which communities have infections. Whereas much testing has been done through traditional, centralized, clinical, or environmental laboratory methods, point-of-care testing has proven successful in reducing time to result. As the pandemic progresses and becomes more broadly distributed, further decentralization of diagnostic testing will be helpful to mitigate its spread. This will be particularly both challenging and critical in settings with limited resources due to lack of medical infrastructure and expertise as well as requirements to return results quickly. In this article, we validate the tiny isothermal nucleic acid quantification system (TINY) and a novel loop-mediated isothermal amplification (LAMP)-based assay for the point-of-care diagnosis of SARS-CoV-2 infection in humans and also for in-the-field, point-of-collection surveillance of wastewater. The TINY system is portable and designed for use in settings with limited resources. It can be powered by electrical, solar, or thermal energy and is robust against interruptions in services. These applied testing examples demonstrate that this novel detection platform is a simpler procedure than reverse-transcription quantitative polymerase chain reaction, and moreover, this TINY instrument and LAMP assay combination has the potential to effectively provide both point-of-care diagnosis of individuals and point-of-collection environmental surveillance using wastewater.


Subject(s)
COVID-19 , Humans , Pandemics , Point-of-Care Systems , RNA, Viral , SARS-CoV-2
4.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Article in English | MEDLINE | ID: covidwho-1687373

ABSTRACT

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Subject(s)
COVID-19 , Nucleic Acid Amplification Techniques , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Humans , Molecular Diagnostic Techniques , Pandemics , RNA, Viral , SARS-CoV-2/isolation & purification
5.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1650891

ABSTRACT

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Subject(s)
COVID-19/genetics , COVID-19/pathology , Lung/pathology , SARS-CoV-2 , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Cohort Studies , Female , Gene Expression Regulation , Humans , Influenza, Human/genetics , Influenza, Human/pathology , Influenza, Human/virology , Lung/metabolism , Male , Middle Aged , Orthomyxoviridae , RNA-Seq/methods , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/pathology , Viral Load
6.
Genomics ; 114(2): 110270, 2022 03.
Article in English | MEDLINE | ID: covidwho-1633861

ABSTRACT

Viruses can subvert a number of cellular processes including splicing in order to block innate antiviral responses, and many viruses interact with cellular splicing machinery. SARS-CoV-2 infection was shown to suppress global mRNA splicing, and at least 10 SARS-CoV-2 proteins bind specifically to one or more human RNAs. Here, we investigate 17 published experimental and clinical datasets related to SARS-CoV-2 infection, datasets from the betacoronaviruses SARS-CoV and MERS, as well as Streptococcus pneumonia, HCV, Zika virus, Dengue virus, influenza H3N2, and RSV. We show that genes showing differential alternative splicing in SARS-CoV-2 have a similar functional profile to those of SARS-CoV and MERS and affect a diverse set of genes and biological functions, including many closely related to virus biology. Additionally, the differentially spliced transcripts of cells infected by coronaviruses were more likely to undergo intron-retention, contain a pseudouridine modification, and have a smaller number of exons as compared with differentially spliced transcripts in the control groups. Viral load in clinical COVID-19 samples was correlated with isoform distribution of differentially spliced genes. A significantly higher number of ribosomal genes are affected by differential alternative splicing and gene expression in betacoronavirus samples, and the betacoronavirus differentially spliced genes are depleted for binding sites of RNA-binding proteins. Our results demonstrate characteristic patterns of differential splicing in cells infected by SARS-CoV-2, SARS-CoV, and MERS. The alternative splicing changes observed in betacoronaviruses infection potentially modify a broad range of cellular functions, via changes in the functions of the products of a diverse set of genes involved in different biological processes.


Subject(s)
COVID-19 , Influenza, Human , Zika Virus Infection , Zika Virus , Alternative Splicing , COVID-19/genetics , Humans , Influenza A Virus, H3N2 Subtype , SARS-CoV-2/genetics , Zika Virus/genetics
7.
Nat Commun ; 12(1): 1660, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1132065

ABSTRACT

In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.


Subject(s)
COVID-19/genetics , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Drug Interactions , Female , Gene Expression Profiling , Genome, Viral , HLA Antigens/genetics , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Humans , Male , Middle Aged , Molecular Diagnostic Techniques , New York City/epidemiology , Nucleic Acid Amplification Techniques , Pandemics , RNA-Seq , SARS-CoV-2/classification , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
8.
iScience ; 24(1): 101896, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1129049

ABSTRACT

Dysregulated IL-1ß and IL-6 responses have been implicated in the pathogenesis of severe Coronavirus Disease 2019 (COVID-19). Innovative approaches for evaluating the biological activity of these cytokines in vivo are urgently needed to complement clinical trials of therapeutic targeting of IL-1ß and IL-6 in COVID-19. We show that the expression of IL-1ß or IL-6 inducible transcriptional signatures (modules) reflects the bioactivity of these cytokines in immunopathology modelled by juvenile idiopathic arthritis (JIA) and rheumatoid arthritis. In COVID-19, elevated expression of IL-1ß and IL-6 response modules, but not the cytokine transcripts themselves, is a feature of infection in the nasopharynx and blood but is not associated with severity of COVID-19 disease, length of stay, or mortality. We propose that IL-1ß and IL-6 transcriptional response modules provide a dynamic readout of functional cytokine activity in vivo, aiding quantification of the biological effects of immunomodulatory therapies in COVID-19.

9.
bioRxiv ; 2020 May 01.
Article in English | MEDLINE | ID: covidwho-823190

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets.

10.
Nat Med ; 26(10): 1609-1615, 2020 10.
Article in English | MEDLINE | ID: covidwho-695062

ABSTRACT

Understanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutic and public health strategies. Viral-host interactions can guide discovery of disease regulators, and protein structure function analysis points to several immune pathways, including complement and coagulation, as targets of coronaviruses. To determine whether conditions associated with dysregulated complement or coagulation systems impact disease, we performed a retrospective observational study and found that history of macular degeneration (a proxy for complement-activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis and hemorrhage) are risk factors for SARS-CoV-2-associated morbidity and mortality-effects that are independent of age, sex or history of smoking. Transcriptional profiling of nasopharyngeal swabs demonstrated that in addition to type-I interferon and interleukin-6-dependent inflammatory responses, infection results in robust engagement of the complement and coagulation pathways. Finally, in a candidate-driven genetic association study of severe SARS-CoV-2 disease, we identified putative complement and coagulation-associated loci including missense, eQTL and sQTL variants of critical complement and coagulation regulators. In addition to providing evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative transcriptional genetic markers of susceptibility. The results highlight the value of using a multimodal analytical approach to reveal determinants and predictors of immunity, susceptibility and clinical outcome associated with infection.


Subject(s)
Complement Activation/immunology , Coronavirus Infections/mortality , Hemorrhage/epidemiology , Macular Degeneration/epidemiology , Pneumonia, Viral/mortality , Thrombocytopenia/epidemiology , Thrombosis/epidemiology , Adult , Age Factors , Aged , Aged, 80 and over , Betacoronavirus , Blood Coagulation/genetics , Blood Coagulation Disorders/epidemiology , COVID-19 , Complement Activation/genetics , Coronavirus Infections/blood , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Diabetes Mellitus, Type 2/epidemiology , Female , Gene Expression , Hemorrhage/blood , Hemorrhage/immunology , Hereditary Complement Deficiency Diseases/epidemiology , Hereditary Complement Deficiency Diseases/immunology , Humans , Hypertension/epidemiology , Intubation, Intratracheal , Male , Middle Aged , New York City/epidemiology , Obesity/epidemiology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Proportional Hazards Models , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Thrombocytopenia/blood , Thrombosis/blood
11.
Br J Oral Maxillofac Surg ; 58(8): 1008-1013, 2020 10.
Article in English | MEDLINE | ID: covidwho-601860

ABSTRACT

The COVID-19 pandemic has caused unprecedented disruption to the routine operations of healthcare services across the world. As the potential duration of the pandemic remains uncertain, the need to develop strategies to continue urgent elective services has received increasing attention. A solution adopted in the Kent, Sussex and Surrey area of England has been to create COVID-19-protected cancer hubs. The Queen Victoria Hospital is the designated hub for head and neck cancer services in the area. We report on the evolution of the head and neck cancer care pathway and standard operating protocols put in place and how these have combined both national guidelines and local problem solving. It is hoped that our experience can help guide other centres as they re-establish head and neck cancer services during the ongoing pandemic.


Subject(s)
Betacoronavirus , Coronavirus Infections , Head and Neck Neoplasms , Pandemics , Pneumonia, Viral , COVID-19 , England , Head and Neck Neoplasms/surgery , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL